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Abstract

We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances
in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of
the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions
between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are
tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances
are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model
of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit
an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under
the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.
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Background
It is well known that naturally occurring materials exhibit
the saturation of the magnetic response beyond the THz
regime. In light-matter interactions at optical frequencies,
the magnetic component of light generally plays a negligible
role, because the force exerted by the electric field on a
charge is much larger than the force applied by the
magnetic field, when light interacts with matter [1]. In the
past few years, developing various metallic or dielectric
nanostructures with appreciable magnetic response at
optical frequencies has been a matter of intense study in
the field of metamaterials. Recently, there is increasing
interest in optical magnetic field characterization in nano-
scale, although it remains a challenge because of the weak
matter-optical magnetic field interactions [2]. At the same

time, there have also been many efforts to obtain strong
magnetic response with magnetic field enhancement in a
wide spectrum range from visible [3–22] to infrared [23–44]
regime. The physical mechanism underlining strong mag-
netic response is mainly the excitation of MD resonance in
a variety of nanostructures including metal-insulator-metal
(MIM) sandwich structures [3, 12, 16, 31, 32, 40], metallic
split-ring resonators [29, 30, 36, 41, 42], high-refractive-
index dielectric nanoparticles [14, 15, 17, 18, 20, 21],
plasmonic nanoantennas [6, 8, 24–26, 28, 34, 37, 43],
metamolecules [7, 9, 11, 13, 19, 33, 35, 38], and so on. To
obtain strong magnetic response with magnetic field
enhancement, MD resonance is also coupled to different
narrow-band resonance modes with a high-quality factor,
e.g., surface lattice resonances [4, 22, 39, 44], Fabry-Pérot
cavity resonances [10, 23], Bloch surface waves [5], and
Tamm plasmons [27]. A strong magnetic response with a
great enhancement of magnetic fields at optical frequencies
will have many potential applications, such as MD spontan-
eous emission [45–52], magnetic nonlinearity [53–56],
optically controlled magnetic-field etching [57], magnetic
optical Kerr effect [58], optical tweezers based on magnetic-
field gradient [59, 60], circular dichroism (CD) measurement
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[61], etc. It is well known that plasmonic electric dipole res-
onance can hugely enhance electric fields in the vicinity of
metal nanoparticles, and its coupling to SPPs can further
enhance electric fields and generate other interesting phys-
ical phenomena. However, there are only a few researches
on the coupling effects of SPPs and MD resonances.
In this work, we will numerically demonstrate the huge

enhancement of magnetic fields at optical frequencies and
the interesting phenomenon of Rabi splitting, due to the
coupling effects of SPPs and MD resonances in metamate-
rials composed of an Ag nanodisk array and a SiO2 spacer
on an Ag substrate. The near-field plasmon interactions
between individual Ag nanodisks and the Ag substrate form
MD resonances. The periodicity of the Ag nanodisk array
leads to the excitation of SPPs at the surface of the Ag sub-
strate. When the excitation wavelengths of SPPs are tuned
to approach the position of MD resonances by changing
the array period of Ag nanodisks, SPPs and MD resonances
are coupled together into two hybridized modes, whose
positions can be well predicted by a coupling model of two
oscillators. In the strong coupling regime of SPPs and MD
resonances, the hybridized modes exhibit an obvious anti-
crossing, resulting into an interesting phenomenon of Rabi
splitting. Moreover, the magnetic fields under the Ag nano-
disks are greatly enhanced, which may find some potential
applications, such as magnetic nonlinearity.
The unit cell of the designed metamaterials for the

coupling effects of SPPs and MD resonances is sche-
matically shown in Fig. 1. The Ag nanodisks lie on
the xy plane, and the coordinate origin is supposed
to be located at the center of the SiO2 spacer. The
incident light propagates in the negative z-axis direc-
tion, with its electric and magnetic fields along the
x-axis and the y-axis directions, respectively. The re-
flection and absorption spectra and the electromag-
netic field distributions are calculated by using the
commercial software package “EastFDTD,” which is
based on finite difference time domain (FDTD)
method [62]. In our numerical calculations, the re-
fractive index of SiO2 is 1.45, and the frequency-
dependent relative permittivity of Ag is taken from
experimental data [63]. This work mainly focuses on
numerical investigation, but the designed metamate-
rials should be realized experimentally by the follow-
ing procedures: the SiO2 spacer is first coated on
the Ag substrate through thermal evaporation, and
then the Ag nanodisk array is fabricated on the SiO2

spacer by some advanced nanofabrication technolo-
gies, such as electron beam lithography (EBL).

Methods
Figure 2 shows the calculated absorption and reflection
spectra of a series of metamaterials under normal incidence
of light, with the array period px along the x-axis direction

Fig. 1 Schematic of metamaterials composed of Ag nanodisks and a SiO2

spacer on Ag substrate. Geometrical parameters: px and py are the array
periods along the x and y directions, respectively; t is the thickness of the
SiO2 spacer; d and h are the diameter and the height of the Ag nanodisks.
Ein, Hin, and Kin are the electric field, magnetic field, and wave vector of the
incident light, which are along the x, y, and z axes, respectively

Fig. 2 Normal-incidence absorption (a) and reflection (b) spectra of
metamaterials schematically shown in Fig. 1, in the wavelength
range from 550 to 1000 nm. The array period px along the x-axis
direction is varied from 550 to 900 nm in steps of 50 nm. The other
geometrical parameters: d = 150 nm, h = 50 nm, t = 30 nm, and
py = 500 nm. For clarity, individual spectra in a and b are vertically
offset by 90 and 60% from one another, respectively
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increased from 550 to 900 nm in steps of 50 nm. For each
px, two resonance modes are found in the spectra, which
result into the appearance of two absorption peaks and two
reflection dips in Fig. 2a and b, respectively. The positions
and bandwidths of two resonance modes are strongly
dependent on the array period px. For px = 900 nm, the right
sharp peak of absorption nearly reaches to 1. Such a strong
light absorption in MIM structures is usually called as per-
fect absorption [64–66]. In addition, we have also investi-
gated the effect of the array period py along the y-axis
direction on the optical properties of metamaterials (not
shown here). It is found that simultaneously changing py has
no significant effect on the optical properties, except for the
appearance of a high-order SPP mode when both px and py
are increased to 700 nm. The high-order SPP mode will
have an obvious red shift for the array period to be further
increased. In Fig. 2, by keeping py = 500 nm unchanged,
only the lowest order SPP mode propagating in the x-axis
direction is excited in the spectral range of interest. In the
following, we will demonstrate that these two resonance
modes originate from the strong coupling between SPPs
and MD resonances in the designed metamaterials.
In order to reveal the physical mechanism of two

resonance modes in Fig. 2, we have proposed a coupling
model of two oscillators to accurately predict the posi-
tions of two resonance modes for different array period
px. In the coupling model, one of the oscillators is SPPs,
and the other is MD. The strong coupling between SPPs
and MD leads to the formation of two hybridized
modes, i.e., the high- and low-energy states, whose ener-
gies can be calculated by the equation [67]:

Eþ;− ¼ EMD þ ESPPsð Þ=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ=2þ EMD−ESPPsð Þ2=4
q

:

Here, EMD and ESPPs are the excitation energies of MD
and SPPs, respectively; and Δ stands for the coupling
strength. In Fig. 3, the open black circles show the posi-
tions of two resonance modes for different array period
px, and the two branches of red lines give the corre-
sponding results calculated by the coupled oscillator
model with the coupling strength Δ = 100 meV. Obvi-
ously, the above model predicted well the positions of
two resonance modes. This suggests that the appearance
of two resonance modes in Fig. 2 is the result of the
interaction of SPPs and MD in metamaterials.
The black diagonal line in Fig. 3 gives the excitation

wavelengths of SPPs for different array period px, which is
calculated by matching the reciprocal vector of the Ag
nanodisk lattice with the momentum of SPPs under nor-
mal incidence [68]. The horizontal green line in Fig. 3
shows the position of MD mode, whose resonance wave-
length is mainly determined by the size of Ag nanodisks
and the thickness of the SiO2 spacer, but is independent of
the array periods. At the crossing of the two lines for

px = 750 nm, SPPs and MD are overlapped in positions,
which are strongly coupled together. Therefore, the posi-
tions of two resonance modes in Fig. 2 exhibit an obvious
anti-crossing, thus forming an interesting phenomenon of
Rabi splitting [67]. Far away from the strong coupling
regime, the positions of two resonance modes follow
approximately one of the two lines.
Beside Rabi splitting, another effect of the strong

coupling between SPPs and MD is the enhancement of
magnetic fields. To exhibit this effect, in Fig. 4, we first
plot the distributions of electromagnetic fields at the res-
onance wavelengths of λ1 and λ2 labeled in Fig. 3 for
px = 550 nm. In this case, the positions of SPPs and MD
are far, and their coupling is weak, as exhibited in Fig. 3.
At the resonance wavelength of λ1, the electric fields are
highly confined near the edge of the Ag nanodisks and
have two field “hotspots” on the left and right sides
extending into the SiO2 spacer (see Fig. 4a). The mag-
netic fields are concentrated within the SiO2 spacer and
have a maximum under the Ag nanodisks (see Fig. 4b).
Such distribution properties of electromagnetic fields are
mainly the typical characteristics of a MD resonance
[69–71]. At the resonance wavelength of λ2, parallel
electromagnetic field bands stretching along the y-axis
direction are formed, although they are disturbed near
the Ag nanodisks (see Fig. 4c and d). In fact, such elec-
tromagnetic field distributions mainly correspond to the
excitation of SPPs [68].
In Fig. 5, we plot the distributions of electromagnetic

fields at the resonance wavelengths of λ3 and λ4 labeled
in Fig. 3 for px = 700 nm. In this case, the positions of
SPPs and MD are close, and their coupling becomes
relatively stronger, as exhibited in Fig. 3. As a result, the

Fig. 3 Open black circles show the positions of absorption peaks or
reflection dips in Fig. 2, and two red curved lines give the corresponding
positions predicted by the coupling model of SPPs and MD mode. The
resonance wavelengths of SPPs (black diagonal line) and MD mode
(horizontal green line) are also presented
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positions of two resonance modes are red-shifted from
λ1 and λ2 to λ3 and λ4, respectively, and the electromag-
netic fields near the Ag nanodisks are further enhanced.
As clearly seen in Fig. 5a and b, at the resonance wave-
length of λ3, the maximum electric and magnetic fields
are enhanced to be about 3500 and 2560 times of the
incident field, which are 1.80 and 1.82 times stronger
than the corresponding values at the resonance wave-
lengths of λ1, respectively. In Fig. 5c and d, the max-
imum electric and magnetic fields at the resonance

wavelength of λ4 are enhanced to be about 1650 and 870
times of the incident field, which are 6.98 and 3.53 times
stronger than the corresponding values at the resonance
wavelengths of λ2, respectively.
Figure 6 shows the electromagnetic field distributions

at the resonance wavelengths of λ5 and λ6 labeled in
Fig. 3 for px = 900 nm. The mixed mode at λ5 has a very
narrow bandwidth, as clearly seen in Fig. 2. As a result,
its electromagnetic fields are hugely enhanced, with the
maximum electric and magnetic fields exceeding 6500

Fig. 4 a–d Normalized electric field intensity (E/Ein)
2 and magnetic field intensity (H/Hin)

2 on the xoz plane across the center of the SiO2 spacers
at the resonance wavelengths of λ1 and λ2 labeled in Fig. 3. Red arrows represent the field direction, and colors show the field strength

Fig. 5 a–d The same as in Fig. 4 but at the resonance wavelengths of λ3 and λ4 labeled in Fig. 3
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and 6100 times of the incident fields, respectively. The
huge enhancement of electromagnetic fields may find
potential applications in nonlinear optics and sensing
[72, 73]. In Fig. 6b, there exist three relatively weak field
enhancement bands parallel in the y-axis direction and a
pronounced field hotspot at the center. Such a field
distribution directly indicates the hybridization feature
of SPPs and MD. The mixed mode at λ6 has a broad
bandwidth, which has more component of MD than
SPP, as indicated in Fig. 6c and d.

Conclusions
In this work, we have numerically investigated the coupling
effects of SPPs and MD resonances in metamaterials, which
are composed of an Ag nanodisk array and a SiO2 spacer on
an Ag substrate. The near-field plasmon interactions
between individual Ag nanodisks and the Ag substrate form
MD resonances. The periodicity of the Ag nanodisk array
leads to the excitation of SPPs at the surface of the Ag
substrate. When the excitation wavelengths of SPPs are
tuned to be close to the position of MD resonances by vary-
ing the array period of Ag nanodisks, SPPs and MD reso-
nances are coupled together into two hybridized modes,
whose positions can be accurately predicted by a coupling
model of two oscillators. In the strong coupling regime of
SPPs and MD resonances, the hybridized modes exhibit an
obvious anti-crossing and, thus, result into an interesting
phenomenon of Rabi splitting. At the same time, the
magnetic fields under the Ag nanodisks are enhanced
greatly, which may find some potential applications, such as
magnetic nonlinearity.
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